The determination of chiroptical dissymmetry factors and electricvs. magnetic-dipole transition amplitude ratios from circularly polarized excitation and emission measurements on racemic $Eu(dpa)_3^{3-}$ in aqueous solution

David H. Metcalf and F.S. Richardson

Department of Chemistry University of Virginia, Charlottesville VA 22901 (USA)

Abstract

A combination of circularly polarized excitation and emission measurements is used to determine the chiroptical properties of $Eu(dpa)_3^{3-}$ complexes in aqueous solution ($dpa \equiv dipicolinate dianion \equiv pyridine-2,6-dicarboxylate$). Intrinsic chiroptical dissymmetry factors are measured for four absorptive and three emissive transitions, and the results are used to calculate ratios of electric- versus magnetic-dipole transition amplitudes.

1. Introduction

In neutral aqueous solution, $Eu(dpa)_3^{3-}$ complexes (where dpa denotes a dipicolinate dianion) have chiral, tris-terdentate chelate structures that exist as a racemic mixture of interconverting optical isomers (enantiomers), A-Eu(dpa)₃³⁻ and Δ -Eu(dpa)₃³⁻. Enantiomer interconversion occurs via an intramolecular, ligand-rearrangement mechanism, and the unimolecular rate constant for Λ -Eu(dpa)₃³⁻ $\leftrightarrow \Delta$ -Eu(dpa)₃³⁻ interconversion processes is *ca*. 20 s⁻¹ at room temperature [1]. Excitation of racemic $Eu(dpa)_3^{3-}$ with either left- or right-circularly polarized light produces ground- and excited-state populations that are non-racemic, and luminescence from the non-racemic excited-state population exhibits chiroptical activity. That is, the luminescence contains unequal amounts of left- and rightcircularly polarized emission intensity. Measurements of this chiroptical activity, as a function of excitation wavelength and emission wavelength, provide a means for characterizing the intrinsic chiroptical properties of the $Eu(dpa)_3^{3-}$ complexes without having to chemically resolve and physically isolate the enantiomeric structures.

2. Experimental section

All experiments reported here were carried out on neutral aqueous solutions (at 20 °C) that contained a 20 mM concentration of $Eu(dpa)_3^{3-}$. The solution samples were excited with either left- or right-circularly

polarized light of variable wavelength (λ), and both the left- and right-circularly polarized intensity components of sample luminescence were measured over a range of emission wavelengths (λ') . The excitation source was a tunable dye laser pumped by a Nd:YAG laser. The linearly polarized output of the dye laser was passed through a Fresnel rhomb of 1/4-wave retardation properties to produce a circularly polarized excitation beam. All experiments were performed using pulsed excitation and time-resolved emission detection techniques. The measured quantities of principal interest were the time-integrated left- and right-circularly polarized luminescence intensities (denoted here by I_1 and I_r , respectively), observed as a function of emission wavelength (λ') and/or excitation wavelength (λ) . The sums and differences of these quantities are generally referred to as total luminescence (TL) and circularly polarized luminescence (CPL) intensities, respectively:

$$I(\lambda', \lambda_p) = I_1(\lambda', \lambda_p) + I_r(\lambda', \lambda_p) \qquad (TL)$$
(1)

$$\overline{\Delta I}(\lambda',\lambda_p) = \overline{I}_1(\lambda',\lambda_p) - \overline{I}_r(\lambda',\lambda_p) \qquad (CPL) \qquad (2)$$

where the polarization state of the excitation wavelength is denoted by the subscript p (λ_+ for left and λ_- for right circularly polarized excitation). The ratio of CPL (ΔI) to TL (I) intensity is used to define the dimensionless quantity

$$\bar{g}_{\rm em}(\lambda',\lambda_p) = \frac{2\overline{\Delta I}(\lambda',\lambda_p)}{\bar{I}(\lambda',\lambda_p)}$$
(3)

which is called an emission dissymmetry factor.

0925-8388/94/\$07.00 © 1994 Elsevier Science S.A. All rights reserved SSDI 0925-8388(93)03014-A

3. Results and discussion

Measurements of $\overline{\Delta I}(\lambda', \lambda_p)$ as a function of λ_p (but at a fixed emission wavelength λ') yield mimics of circular dichroism (CD) spectra for Λ -Eu(dpa)₃³⁻ complexes (if $p \equiv +$) and Δ -Eu(dpa)₃³⁻ complexes (if $p \equiv -$). Measurements of $\overline{\Delta I}(\lambda', \lambda_p)$ as a function of λ' (using a fixed excitation wavelength λ) yield mimics of the circularly polarized luminescence (CPL) spectra of Λ -Eu(dpa)₃³⁻ complexes (if $p \equiv +$) and Δ -Eu(dpa)₃³⁻ complexes (if $p \equiv -$). Measurements of $\bar{g}_{em}(\lambda', \lambda_p)$ emission dissymmetry factors as a function of λ' and/ or λ_p can provide information about the intrinsic absorption and emission dissymmetry factors of the complexes [1,2]. The relevant relationship is [2]

$$\bar{g}_{\rm em}(\lambda', \lambda_{\pm}) = \pm 1/2 \left[\frac{k_0}{k_0 + 2k_c} \right] g_{\rm ab}^{\Lambda}(\lambda) g_{\rm em}^{\Lambda*}(\lambda') \tag{4}$$

where k_0 denotes the rate constant for decay of $\operatorname{Eu}(\operatorname{dpa})_3^{3-}$ luminescence, k_c denotes the rate constant for Λ -Eu($\operatorname{dpa})_3^{3-} \leftrightarrow \Delta$ -Eu($\operatorname{dpa})_3^{3-}$ enantiomer interconversion processes, $g_{ab}^{\Lambda}(\lambda)$ is an intrinsic absorption dissymmetry factor characteristic of ground-state Λ -Eu($\operatorname{dpa})_3^{3-}$ complexes, and $g_{em}^{A*}(\lambda')$ is an intrinsic emission dissymmetry factor characteristic of excited Λ -Eu($\operatorname{dpa})_3^{3-}$ complexes. Recall from the definitions of chiroptical dissymmetry factors that $g_{ab}^{\Lambda}(\lambda) = -g_{ab}^{\Lambda}$ and $g_{em}^{A*}(\lambda') = -g_{em}^{\Lambda*}$ [2–6]. Under the conditions employed in the present study, $k_0 = 620 \text{ s}^{-1}$, $k_c \approx 20 \text{ s}^{-1}$, and eqn. (4) may be re-written as

$$\bar{g}_{\rm em}(\lambda',\lambda_{\pm}) \approx \pm 0.47 g_{\rm ab}^{\Lambda}(\lambda) g_{\rm em}^{\Lambda*}(\lambda') \tag{5}$$

Examples of $\overline{\Delta I}$ versus λ_p and $\overline{\Delta I}$ versus λ' spectra of $Eu(dpa)_3^{3-}$ complexes have been shown in several previous papers [1–3], and, due to space limitations, no spectra are shown here. Instead, we focus on results obtained from emission dissymmetry measurements carried out as a function of excitation and emission wavelength. These results are shown in Table 1. Intrinsic chiroptical dissymmetry factors are listed for four absorptive and three emissive transitions of Λ -Eu(dpa)³⁻. The initial and final energy levels in these transitions are labelled according to their ^{2S+1}LJ multiplet parentage and their symmetry in the D_3 point group.

In the types of measurements reported here, the magnitude and sign of g_{ab}^{A} (or $g_{em}^{A^*}$) for any given transition, say $i \rightarrow j$ (or $i \leftarrow j$), are determined by the magnitudes and relative orientations of electric- and magnetic-dipole transition vectors. For the absorptive transition, $i \rightarrow j$, the relevant expression is [6]

$$g_{ab}^{A}(i \to j) = \frac{4|\mathbf{P}_{ij}^{A}||\mathbf{M}_{ij}^{A}| \cos \theta_{ij}^{A}}{|\mathbf{P}_{ij}^{A}|^{2} + |\mathbf{M}_{ij}^{A}|^{2}} = \frac{4R_{ij}^{A}}{D_{ij}^{A}}$$
(6)

TABLE 1. Intrinsic chiroptical dissymmetry factors and P_{ij}/M_{ij} ratios determined for ${}^{7}F_{0,1} \rightarrow {}^{5}D_{0,1}$ absorptive transitions and ${}^{7}F_{1,2} \leftarrow {}^{5}D_{0}$ emissive transitions of Λ -Eu(dpa) ${}^{3-}_{3}$ complexes in aqueous solution

Transition	Wavelength (nm) ^a	Dissymmetry factor		
		g^{Λ}_{ab}	g ^{A*} gem	$\frac{P_{ij}}{M_{ij}}$
$\overline{{}^{7}F_{0}(A_{1}) \rightarrow {}^{5}D_{1}(E)}$	526.3	0.31		0.078 ^b
$^{7}F_{0}(A_{1}) \rightarrow ^{5}D_{1}(A_{2})$	527.1	0.14		0.035 ^b
$^{7}F_{1}(A_{2}) \leftrightarrow ^{5}D_{0}(A_{1})$	590.9	0.13	0.13	0.033 ^b
$^{7}F_{1}(E) \leftrightarrow ^{5}D_{0}(A_{1})$	594.8	0.26	0.26	0.065 ^b
$^{7}F_{2}(E) \leftarrow ^{5}D_{0}(A_{1})$	615.7		-0.06	67°

^aAt maximum absorption or emission intensity of the corresponding transition. The dissymmetry factors are independent of wavelength within any given transition line profile. ^bCalculated from eqn. (11). ^cCalculated from the emission analogue of eqn. (10).

where \mathbf{P}_{ij}^{A} and \mathbf{M}_{ij}^{A} denote electric- and magnetic-dipole transition vectors, respectively; θ_{ij}^{A} is the angle between \mathbf{P}_{ij}^{A} and \mathbf{M}_{ij}^{A} ; the quantity $R_{ij}^{A} = |\mathbf{P}_{ij}^{A}| |\mathbf{M}_{ij}^{A}| \cos \theta_{ij}^{A}$ is defined as a transition rotatory strength; and D_{ij}^{A} is the total (electric plus magnetic) dipole strength of the transition $i \rightarrow j$. An analogous expression can be written for $g_{em}^{A*}(i \leftarrow j)$. In axially symmetric systems, such as $\operatorname{Eu}(\mathrm{dpa})_{3}^{3-}$, the electric- and magnetic-dipole transition vectors must be either parallel or anti-parallel (*i.e.* $\theta_{ij} = 0$ or 180°), and eqn. (6) may be evaluated to the form

$$g_{ab}^{A}(i \to j) = \pm \frac{4P_{ij}M_{ij}}{(P_{ij})^{2} + (M_{ij})^{2}} = \frac{4R_{ij}^{A}}{D_{ij}}$$
(7)

where the plus (+) sign corresponds to parallel transition vectors, the minus (-) sign corresponds to antiparallel transition vectors, P_{ij} and M_{ij} represent the magnitudes (or lengths) of the transition vectors, and the superscript designation of enantiomer species (Λ or Δ) has been suppressed for all quantities that are invariant to $\Lambda \leftrightarrow \Delta$ transformations. (For Δ enantiomers, $\theta_{ij}^{\Delta} = \theta_{ij}^{A} + 180^{\circ}$, and, therefore, $g_{ab}^{\Delta}(i \rightarrow j) = -g_{em}^{A}(i \rightarrow j)$ and $R_{ij}^{\Delta} = -R_{ij}^{\Lambda}$).

From the above discussion, it is seen that the signs of the g_{ab}^{A} and g_{em}^{A*} values listed in Table 1 provide direct information about the relative orientations of electric- and magnetic-dipole transition vectors associated with several optical absorption and emission processes in Eu(dpa)₃³⁻ complexes. Additionally, the magnitudes of the measured g_{ab}^{A} and g_{em}^{A*} values can be correlated with ratios of electric- versus magnetic-dipole transition amplitudes (*i.e.* ratios of P_{ij} versus M_{ij}). For an absorptive transition $(i \rightarrow j)$, this correlation is given by

$$\frac{1}{|g_{ab}^{A}|} = 1/4 \left[\frac{P_{ij}}{M_{ij}} + \frac{M_{ij}}{P_{ij}} \right]$$
(8)

and a similar expression can be written for the dissymmetry factor $|g_{em}^{A*}|$ of an emissive transition $(i \leftarrow j)$. Equation (8) may be reformulated to obtain a quadratic equation of the form

$$|g_{ab}^{A}|r^{2} - 4r + |g_{ab}^{A}| = 0 \qquad \left(\text{where } r = \frac{P_{ij}}{M_{ij}}\right) \tag{9}$$

If $|g_{ab}^{A}| = 2$ (the maximum value for a dissymmetry factor), this equation has just one solution, r=1 (and, therefore, $P_{ij}=M_{ij}$). However, for any value of $|g_{ab}^{A}|$ less than 2, eqn. (9) has two solutions given by

$$r(P_{ij} > M_{ij}) = \frac{2 + (4 - |g_{ab}^{A}|^{2})^{1/2}}{|g_{ab}^{A}|}$$
(10)

$$r(P_{ij} < M_{ij}) = \frac{2 - (4 - |g_{ab}^{A}|^{2})^{1/2}}{|g_{ab}^{A}|}$$
(11)

It is known from polarized optical absorption and emission measurements on $Eu(dpa)_3^{3-}$ in hexagonal crystals of Na₃[Yb(dpa)₃]·NaClO₄·10H₂O that all except one of the transitions listed in Table 1 exhibit predominantly magnetic-dipole character (i.e. $P_{ii} < M_{ii}$) [7]. The only exception is ${}^{7}F_{2}(E) \leftarrow {}^{5}D_{0}(A_{1})$, which shows predominantly electric-dipole polarization properties. With this knowledge, one can make an informed choice between the use of either eqn. (10) or eqn. (11) in calculating P_{ij}/M_{ij} ratios from measured g_{ab}^{Λ} (or $g_{em}^{\Lambda^*}$) dissymmetry factors. The results of these calculations are shown in the last column of Table 1. Note the decisively dominant electric-dipole character of the ${}^{7}F_{2}(E) \leftarrow {}^{5}D_{0}(A_{1})$ transition, and the decisively dominant magnetic-dipole character of each of the other transitions listed.

The P_{ij}/M_{ij} ratios given in Table 1 may be used to further calculate the percentage of electric- or magnetic-

dipole contribution to the total dipole strength (D_{ij}) of a transition. For the ${}^{7}F_{2}(E) \leftarrow {}^{5}D_{0}(A_{1})$ transition, 100 $(P_{ij})^{2}/D_{jj} > 99.9$ (percent electric-dipole contribution). For all of the other transitions, $100(M_{ij})^{2}/D_{ij} > 99.4$ (percent magnetic-dipole contribution).

4. Conclusion

This paper reports the first direct measurements of intrinsic chiroptical dissymmetry factors for enantiomeric species in a racemic mixture, and it reports the first determinations of electric- versus magnetic-dipole transition amplitude ratios based on chiroptical absorption and emission measurements.

Acknowledgment

This work was supported by a grant from the US National Science Foundation (NSF Grant CHE-9213473 to F.S.R.).

References

- 1 D.H. Metcalf, S.W. Snyder, J.N. Demas and F.S. Richardson, J. Am. Chem. Soc., 112 (1990) 469.
- 2 F.S. Richardson and D.H. Metcalf, in K. Nakanishi, N. Berova and R. Woody, eds., *Circular Dichroism: Interpretation and Applications*, VCH, New York, in press.
- 3 D.H. Metcalf, S.W. Snyder, J.N. Demas and F.S. Richardson, J. Phys. Chem., 94 (1990) 7143.
- 4 F.S. Richardson and J.P. Riehl, Chem. Rev., 77 (1977) 773.
- 5 J.P. Riehl and F.S. Richardson, Chem. Rev., 86 (1986) 1.
- 6 F.S. Richardson, J. Less-Common Met., 149 (1989) 161.
- 7 J.P. Bolender, D.H. Metcalf and F.S. Richardson, unpublished results.